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Here we report a set of new parameters for the generalized Born (GB) model consistent with the RESP
atomic partial charge assignment protocol. Effective atomic radii and screen factors as parameters have been
obtained through genetic algorithm optimization in the parameter space to minimize the differences between
the calculated and experimental solvation free energies. Here, the calculated solvation free energies are based
on a GB model using partial charges fitted from the electrostatic potentials based on the 6-31G* basis set
with the nonelectrostatic contributions to the free energy of solvation modeled in terms of the solvent accessible
surface area (SASA). The mean unsigned error in the solvation free energies calculated by the GB/surface
area calculations using the final parameters of the 328 neutral molecules in the training set is 0.85 kcal/mol,
and for the 30 charged molecules the value is 4.36 kcal/mol. The refined parameters were then applied to
predict the solvation free energies of 44 neutral or charged organic molecules and 15 proteins, and reliable
results were obtained for both organic molecules and proteins. For the 36 neutral organic molecules in the
test set, our parameters incurred an unsigned mean error of 0.73 kcal/mol, and for the eight charged molecules
in the test set, our parameters incurred an unsigned mean error of 3.65 kcal/mol. For the 44 organic molecules,
the performance of the GB/SA model based on our new parameters was much better than Possion-Boltzmann
(PB)/SA and GB/SA based on Jayaram’s parameters. For the 15 proteins randomly selected from the Protein
Data Bank, the calculated results from GB/SA based on our new parameters also gave consistent results with
those from PB/SA and were much better than GB/SA based on Jayaram’s parameters. This model might be
widely applied in molecules dynamics, protein folding, molecular docking, free energy calculations, and
conformation analysis. Moreover, we are now supplying a program to help AMBER users apply our new
parameters to their MD simulations.

Introduction solvation treats the solvent as a high dielectric continuum,
interacting with charges that are embedded in solute molecules
of lower dielectric medid® 18 Despite the severity of the
approximation, this model gives a good account of the electro-

Accurately and rapidly modeling solvation is crucial to
guantitatively understanding the chemical and physical proper-

ties that underly many biochemical processes. To solve this static component of solvation energy. However, such dielectric

3 i 10
problem, both moleculés® and co.nt'lnuurf‘r models  of continuum models of the solvent do not include van der Waals
solvent have been developed. Explicit solvent models employ solvent-solute interaction terms

thousands of discrete solvent molecules and have been widely Because of the shortcomings of the previous models, the

used for simulations in the liquid environment. Many propertigs Possion-Boltzmann (PB)/SA model and the generalized Born
of th_e_solutlons can be reproduced by caIg:uIaﬂons employing (GB)/SA model had been developed, which provided solvation
explicit solvent models, but such calculations converge very free energy based on the PB equatfoor GB modet for the
§Iowly because of the_ '?‘fge number of particles and States g|actrostatic component and SA for the nonpolar component of
involved. Because explicit solvent models are so computation- 4« < jvation free energy

ally demanding, there is interest in developing more rapid —, yhe pB/SA and GB/SA models, the solvation free energy
continuum solvation models. Continuum solvation models treat is given as the sum of the soluteolvent van der Waals term

the .sollvent as a continuous medium surroundmg .the SOIUteand the solutesolvent electrostatic polarization term, as il-
beginning near its van der Waals surface. In principle, such lustrated in eq 1.
models can predict solvation effects with relatively little
computational resources, because the model includes no particles G
other than the atoms of solute.

A lot of continuum solvation models have been reported over  Because hydrocarbons are nonpolar molecu@&sg (~ 0),
the years. Many treatments of these were based on the surfacand theirGs, in water is approximately linearly relatéd?® to
area (SA) or solvent accessible surface area (SASA}. their SASA, we compute the solutsolvent van der Waals term
However, we are concerned that area-based representationpy evaluating the SASA.
provide poor approximations for the long-range electrostatic G, are usually presented by the PB equation, which is
component of solvation. Another popular approach to continuum typically solved by finite-difference or boundary element
numerical method$17-1° The equation solving procedure may
* Corresponding author. E-mail: xiaojxu@chem.pku.edu.cn. become very expensive for proteins and nucleic acids, so there
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is a interest in finding an approximate solvation for the PB mechanical GB models (the SMx models) and have gotten

equation. One candidate is the GB approadh.this model, brilliant results34
the polar term of solvation free energy is represented by eqs 2
and 3. Methodology

N N g Data S_et.V_\/e selecFed 402 organic moI_ecuIes to perfqrm the
AG. = — _(1 . _) o @) parametrization. Their names and experimental solvation frge
pol .Z energies are included in Supporting Information. The experi-
mental solvation free energies were determined at 298 K, 1 atm.
_ > > The molecular geometries of all compounds were modeled using
fes = \/ rj” + RR exp(-r; /4RR) ®) the Ceriud molecular simulation packageThe initial structures
were fully minimized using molecular mechanics with the
Among the equations) andg; is the partial charge of atoms ~ MMFF force field 3¢ Conformational analyses were performed
i andj, respectivelyg, is the solvent dielectric constant of the for some molecules with flexible chains to find the global
media;r;j is the distance between atorinandj; andR; andR; minimum geometries. For each molecule, only the global
is the effective Born radii of atomisandj, respectively. In its minimum conformation was used in the subsequent parametri-
original form, R was estimated by a numerical integration zation. The whole data set was divided into a training set with
procedure, but recently a pairwise approximation calculation 358 molecules and a test set with 44 molecules. For all
of effective Born radii has been reported, and was widely molecules in the training set, 328 molecules were neutral, while
accepted in estimating the solvation free energies of prot@ins. the other 30 molecules were charged. The solvation parameters
The continuum solvation model has been reviewed heavily in were determined based on the training set, and the actual
the recent past, to include GB modélg2 A nice review of prediction ability was validated by the test set. The parametriza-
both continuum and explicit models applied to biological tion procedure is basically searching for a set of parameters
problems is that by Orozco and Lugtie. that could reproduce the solvation free energies of the param-
The energy calculations of protein and nucleic acids are etrization set molecules. The electrostatic contribution to sol-
typically based on force fields such as AMBER, CHARMM, vation free energy can be estimated according to eqs 2 and 3,
and GROMOS, and each force field has its own rule in which requires an input of atomic partial charge, atomic
determining the atomic partial charges. For instance, the Cartesian coordinates, and atomic initial Born radii. The
AMBER 6.0 suite software package employs a so-called RESP nonpolar contribution to the solvation free energy is estimated
atomic partial charge assignment protocol, so for GB models by a molecule’s SASA. The derived model was then applied to
run on these force fields, it is necessary to determine a set ofpredict the solvation free energy of two test sets.
parameters to estimate effective Born radius accurately. In 1998, Among the first test set made up of 44 simple organic
Jayaram et al. reported a set of parameters for GB modelsmolecules, 36 molecules were neutral and 8 molecules were
consistent with the RESP protocdl.in 2000, Cheng et al.  charged. As the second test set, 15 proteins were chosen
reported a set of parameters for GB models consistent with therandomly from the Brookhaven Protein Data Bank (PDB). For
MMFF force field?> Recently, Liu et al. reported GB parameters these proteins, all crystallographic water molecules were
consistent with the GROMOS96 force fielel. eliminated from the structures. Some missing hydrogen atoms
As we mentioned above, there was already a set of GB were added using the Insightll molecular simulation packédge,
parameters consistent with the RESP protocol reported bywith a neutral sp3 N-terminus and a carboxylic (COOH)
Jayaram et al. in 1998, but their parameters were designed onlyC-terminus assigned at neutral pH. These structures were
for proteins, and not suitable for studying the proteimhibitor minimized using the AMBER force field to remove any steric
complex system; so for many organic molecules, the perfor- overlap with a restraint of the main chain.
mance of GB/SA based on the Jayaram’s parameters is very Atom Typing Rule. We classified the atoms in molecules
poor. Moreover, Jayaram’s group employed a relatively small according to its element and hybridization. A total of 21 atom
training set (32 molecules) to derive their parameters, which is types were introduced, and four of them were designed for
insufficient for dealing with small organic molecule systems, representing charged molecules. The definition of these atom
so there is interest in a set of GB parameters that could predicttypes was based on the SMARTS description (see Tabié 1).
the solvation free energy of small organic molecules accurately. SMARTS is a language that allows you to specify substructures
Here we report a set of parameters for the GB model using rules that are straightforward extensions of SMILES. In
consistent with the RESP atomic partial charge assignmentfact, almost all SMILES specifications are valid SMARTS
protocol. This set of parameters was derived by fitting to the targets. As SMILES, in SMARTS one can use atomic and bond
experimental solvation free energies of 358 small organic symbols to specify a graph. However, in SMARTS the labels
molecules. To our knowledge, the training set used here is for the graph’s nodes and edges (its “atoms” and “bonds”) are
significantly larger than those in previous watk?® The extended to include “logical operators” and special atomic and
adoption of a large training set gives us more opportunity to bond symbols; these allow SMARTS atoms and bonds to be
define more elaborate definitions of atom typing rules. Further- more general. Using SMARTS, flexible and efficient substruc-
more, we used the genetic algorithm (GA) to optimize the ture search specifications can be made in terms that are
difference between the calculated solvation free energies andmeaningful to chemists. In the current work, a parameter file
the experimental solvation free energies. As a very efficient was used to store the SMARTS chains defined for all atom
stochastic optimization method, it has been widely used to solvetypes. If we want to add some new typing rules or modify the
the minimization problems such as conformational seafch, typing rules, we only need to make some modifications to this
molecular docking® 3 and QSAR333 We expect that by  parameter file.
applying GA as the optimization method, the parameters for  Derivation of Atomic Coordinate and Atomic Partial
each atom type should achieve the most optimal values. TheCharges.Partial charges were derived to be consistent with the
Minnesota group has used GA to develop all of their quantum AMBER charge derivation protocols. All the studied organic
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TABLE 1: Typing Protocol of Atom Types and Derived Parameters for Generalized Born Solvation Model

occurrence in screen
no. name description parametrization set radii parameter
1 HC hydrogen atom connected to alkane carbon 2707 1.6 0.5
2 H1 hydrogen atom connected to polar atom 100 0.9 1.2
3 HA hydrogen atom connected to aromatic carbon 376 0.9 0.8
4 C1 sp carbon atom 25 25 0.9
5 Cc2 sp carbon atom 155 2.4 0.5
6 C3 s carbon atom 1151 2.1 0.6
7 CA aromatic carbon 538 17 0.8
8 N1 sp nitrogen atom 7 1.4 15
9 N2 sp nitrogen atom 51 1.3 0.7
10 N3 sp nitrogen atom 28 1.2 0.9
11 o1 sp oxygen 95 1.85 1.0
12 02 sp oxygen 132 15 0.8
13 F fluorine 89 2.0 1.0
14 P phosphorus 9 25 0.5
15 S sulfur atom 25 2.0 11
16 Cl chlorine 128 2.2 0.8
17 Br bromine 37 25 0.7
18 N2C charged $mitrogen atom 24 2.8 0.6
19 N3C charged Smitrogen atom 14 1.4 1.0
20 ocC charged oxygen atom 8 1.3 1.9
21 SC charged sulfur atom 4 1.8 1.1

molecules after minimization of molecular mechanics were  Nonpolar Contribution of the Solvation Free Energy. As
further optimized using quantum mechanics with HF/6-31G we had mentioned above, the nonpolar contribution solvation
basis set, and then the HF/6-31G* electrostatic potential (ESP)free energy is linear relative to the SASA. We calculated the
charges of the small organic molecules were obtained usingsurface using MSMS with a probe radius of 1.44AThe
Gaussian-98? For proteins, their ESP charges were assigned nonpolar contribution of solvation free energy is then estimated
using xleap the graphics interface of AMBER 6.0 software with a coefficient of 0.005 kcal/(mol A, which is the default

packagé which assigned the predetermined RESP charge to value of the SANDER module of the AMBER 6.0 software
each atom in protein. The charge we used here was the gaspackage.
phase HF/6-31G* charge, which is larger than the condensed-

phase charge, but this error mimics the increased p_artifal atomiCrequired by a GB/SA solvation model. Given a set of parameters,
charges that would be expected after solute _polarlzatlon WEre e can predict the solvation free energy of each molecule in
the solute to be treated by a quantum mechanical self-conssten%he training set, and given the experimental solvation free

reaction field procedure. Carlson et al. were the first to point : . .

this out explicitly®0 energy, we can estimate its mean unsigned error.
Calibration of Atomic Effective Born Radii. The effective Here, the fitting procedure was basged on GA, which was

Born radii were calculated following a procedure recommended Under development in our laboratoiy*? GA can effectively

by Hawkins, Cramer, and Truhlar, in which the effective Born deal with the multiple-dimension problem, no matter whether

radii are estimated from a sum over atom pairs as described inthose variables are highly coupled or not, which makes it an
eq 418 ideal optimization method for the problem of parametriza-

tion.334243The brief fitting process based on GA is in four

1 1 1 1 N1 1 steps: creation of the initial population, selection operation,
R™=r + + crossover operation, and mutation operation. According to the
i ii ij GA, an individual should be represented as a linear string, which

1 plays the role of the DNA for the individual, so the parameters
—In—+——-—"1 @ for all atom types were treated as a string. The initial population
2r,  U;  2rg Uij2 L.2 was generated by randomly generating the initial parameters.
Then these individuals were scored according to their fithess.
where In the parametrization of GA, the sum of mean unsigned errors
) of the training set was used as the score function. After some
Li=1, ifr > iy + o cycles of the selection, crossover, and mutation operations, the

model with the highest fitness score was obtained. The GA

Parameters Fitting Procedure.Now we have all the inputs

Ly=r, ifry—p<ri<r+p optimizations were terminated if the total mean unsigned error
L if B did not change after a certain number of iterative cycles; for

i = g ep T =Ty = example, after 100, the optimization would end. More detailed

U =1, ifr, > f o, description of the fitting process based on GA can be found in

our previous work342:43

Uj=r;+p, ifr,<r+p The fitting procedure was taken in two stages. In the first

stage, the parameters of 17 normal atom types were determined

In the above equations; andr; are the initial Born radii of by fitting the experimental solvation free energy with the
atomi and atonj, while andp; is the product of atoriis initial calculated solvation free energies of the 328 neutral using a
Born radii and screen parameters. The screen parameters wergenetic algorithm. In the second stage, the derived parameter
introduced by Hawkins et al. to correct for systematic errors in the first stage was fixed and the parameters of four ion atom
introduced by the pairwise screening approximation. types were determined by fitting the experimental solvation free
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energies with the calculated solvation free energies of the 30 TABLE 2: Neutral Organic Molecules in the Training Set
charged molecules using a systemic search method. with Deviations Larger than 2.0 kcal/mol

PB/SA Solvation Model.As we had mentioned above, PB/  no. molecular name AGexp  AGcac residue
SA solvation model is a widely accepted solvation model, S0 g5 tetrafluoromethane 316 0.33-2.83
we used the model to predict the solvation free energy of test 66 hexafluoroethane 3.94 1.07-2.87
set molecules, and 15 proteins for a reference. 67 octafluoropropane 4.28 2.01-2.27

In PB/SA model, the electrostatic contribution to the solvation 68 fluorobenzene 078 —1.71 -2.49
free energy was calculated by taking the difference between ;8 ‘ihllozrozﬂuoromethane 077 —1.36  —2.13

. . ,1,2,2-tetrachloroethane —-2.36 —0.08 2.28
the total energy of the system obtained witht = 2; eext=1 225 methyl formate —278 -591 -313
and eint = 2; eext = 78.5. It requires an input of atomic 226 ethyl formate —2.65 —529 —2.64
coordinate, partial charge, and van der Waals radii. In our 227 propyl formate —-248 —521 -273
calculations, we used the same partial charge and coordinate251 ethyl heptanoate —4.60 -—7.87 -327
as in the GB calculation. For the van der Waals radii, we used methyl octanoate —4.61 —6.72 —2.11
the default value supplied by the Delphill software packHge 253 methyl benzoate —450 0 —r55 —3.05
. * 254  butylamine —-4.38 —6.65 —2.27
The radii of atoms were taken from the PARSE paramete¥'set. 255 pentylamine —4.09 —6.67 -258
It should be noted that the PARSE parameter set does not256 hexylamine -4.04 —-6.82 -2.78
provide the van der Waals radii of halogen, so we used the van 264 N,N-dti;]n?thylpiperazine —;?g —g-gj ggg
der Waals radii in the AMBER force field instead, which is -methylpipéraziné -/ 2. :
1.75 A for the fluorine atom, 1.95 A for the chlorine atom, and ggg é&l];l?ér:gé?g:ﬁr;ghenyl urea __13:32 __12'22 _éfg
2.22 A for the bromine atom. 271 N-methylmorpholine -6.34 —359 275

The calculations based on PB equations were performed using272 N-methylpyrrolidine -397 -080 3.17
the Delphill software package. In the prediction of solvation 273 N-methylpiperidine -3.89 -0.78 311
free energies of test set molecules, the resolution employed was291 9-methyladenine —13.60 —20.19 —6.59

: . . : 307 N-methylformamide —10.00 —7.94 2.06
4 grids/A. For proteins, the resolution was 1.8 grids/A. The 309 E-N-methvlacetamide _1000 -775 595
calculations of SASA were performed using the MSMS 31 Z-N-methy}/llacetamide ~10.00 -714 286
program’ 328 dimethyl 3-methyl-4-thio- -6.92 —3.85 3.07

Jayaram’s GB/SA Model. Jayaram's generalized Born methoxyphenyl thiophosphate
model was employed to predict the solvation free energy of all 329 ethyl 4-cyanophenyl —510 -791 -281

the reference systemsThe setting is the same as that in our phenyithiophosphonate

GB calculations. . . .
It should be noted that many molecules in the training set much m’ore complicated than those In_proteins. Thgrefore,

and the test set contain halogen atoms, but they do not haveJayargms pargmgters may not be .sunable for studying the

corresponding GB parameters in Jayaram’s parameter set, Séolvamon cont_nbyt_lon to the mteracnon fr_ee energy petween

for these atoms, the initial Born radii were set to van der Waals EN2Y™M€ and inhibitor, which is of great importance in drug

radii in the AMBER force field and the screen parameter was design. . . .

setto 1.0. The calculations based on Jayaram’s solvation model To predict the solvation free energy of organic molecules,

were performed using SANDER in AMBERG.0 with the control more complicated atom typing rules must .be employed. Here
we employed an atom typing rule containing 21 atom types,

parameter GBPARM set to 1. . . o
and four of them are specially designed for representing ions.

Their definitions and number of appearance in the training set
are listed in Table 1. To avoid the overfitting problem, we
Atom Typing Rules. As we mentioned above, for each atom employed a much bigger training set made up of 358 molecules,
two parameters should be determined: the initial Born radii and in which 328 are neutral and 30 are charged.
the screen parameter, so the determination of the parameter of We took this typing rule from the one SANDER used in the
every atom is impossible. One strategy is to classify atoms into calculation of molecular SASA. As we know SANDER
different categories according to its chemical environment. employed a method named LCPO to calculate molecular SASA.
Atoms in the same category have the same parameters. Eaclin LCPO, atoms were classified into 21 types according to their
category is called an atom type, and their definitions are called element, hybridization, and number of hydrogen atoms linked
the atom typing rule. The atom typing rule is the key of the to it; our typing rule is much like theirs except that we neglect
parametrization work, and it should meet some demands. First,the number of hydrogen atoms which will enlarge our type set
it should be fully contained, which means that every atom in and consequently cause the overfitting problem.
the concerned system can be classified into one atom type; Solvation Free Energy of Training Set and Test SetThe
second, each atom type should be exclusive, which means therelerived parameters are listed in Table 1. If we do not consider
should not be an atom that can be classified into two or more the four charged atom types, the GB/SA model based on the
categories; third, the number of atom types should be as smallnew parameters yielded fairly satisfactory resuits= 328,
as possible to avoid the overfitting problem. r =0.911,s = 1.241,F = 1590.841. From the predictions to
In the work of Jayaram et a%the authors employed relative  the molecules in the training set, there are two compounds
simple atom typing rules, in which atoms are classified into six (compounds 268 and 291 in Table A, Supporting Information)
types according to their element. They chose this typing rule with deviations larger than 6.0 kcal/mol. If we eliminate these
partly because of their relative small training set (32 molecules). two compounds as outliers, the correlation between the experi-
Their parameters would be efficient in predicting the solvation mental solvation free energies and the calculated values was
free energy of proteins and nuclear acids, because atom typesmproved obviously it = 326, r = 0.924,s = 1.115,F =
in these systems are very limited, but it may not behave well in 1911.039). For the 328 neutral molecules in the training set,
predicting the solvation free energies of organic molecules this new set of parameters gives a mean unsigned error of 0.85
because the chemical environments in organic molecules arekcal/mol in predicting the solvation free energy. For the charged

Results and Discussion
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TABLE 3: Solvation Free Energy of Molecules in the Test Set

no. name AGexp our GB/SA model PB/SA model Jayaram’s GB/SA model
Al n-pentane 2.33 1.18 1.13 1.67
A2 n-heptane 2.62 1.32 1.29 1.96
A3 4-methyl-1-pentene 1.91 1.15 —-1.01 -0.19
A4 1,4-pentadiene 0.94 0.98 —2.46 -1.29
A5 butenyne 0.04 —0.07 —4.01 —3.13
A6 butylbenzene —0.40 -1.30 —2.16 0.67
A7 1,1-difluoroethane —0.11 —1.34 —2.92 —0.59
A8 dichlorodifluoromethane 1.69 1.15 1.14 1.68
A9 1-bromo-1,2,2,2-tetrafluoroethane 0.52 —1.30 —0.86 2.88
A10 1,1,1,2-tetrachloroethane —1.15 —0.36 —1.53 1.39
All 1,1-dichlorobutane —0.70 —0.51 —1.47 0.84
Al12 chlorobenzene —1.01 —1.60 —2.17 0.36
A13 1-chloro-2-bromoethane —1.95 —0.82 —-2.81 0.28
Al4 1-bromo-2-methylpropane —0.03 —0.48 —-1.61 0.17
A15 o-bromocumene —0.85 -1.31 —2.03 0.51
Al6 1-butanol —4.72 —5.24 —4.12 —1.97
Al7 2-methyl-1-pentanol —3.93 —4.62 -3.79 —-1.51
Al8 1-heptanol —4.25 —4.94 —-3.79 —1.42
A19 3-cresol —5.49 —5.86 —7.02 —3.04
A20 ethyl propyl ether —-1.81 -1.23 —0.89 1.25
A21 1,2-diethoxyethane —3.53 —2.43 —-2.16 1.46
A22 pentanal —3.03 —2.89 —4.26 —3.16
A23 m-hydroxybenzaldehyde —9.51 —8.80 —10.22 —5.51
A24 cyclopentanone —4.68 —-3.32 —4.76 —2.98
A25 propionic acid —6.46 —6.36 —-8.11 —4.80
A26 isobutyl formate —2.22 -3.13 —5.24 —1.68
A27 methyl propionate —2.97 —3.01 —4.93 —1.54
A28 methyl hexanonate —2.48 —-2.57 —4.58 —-0.84
A29 dimethylamine —4.28 —4.99 —1.98 —0.36
A30 aniline —5.49 —7.42 —7.69 —2.31
A31 pyrrolidine —5.47 —2.88 —-1.24 0.84
A32 2,4-dimethylpyridine —4.85 —4.39 —4.33 —-1.44
A33 2-ethyl-3-methoxypyrazine —4.39 —4.20 —3.48 —0.10
A34 N',N-dimethyl formamide —4.90 —5.38 —6.81 —4.45
A35 thioanisole —2.73 —2.09 —3.20 —0.51
A36 tripropyl phosphate —6.10 —6.47 —8.58 -3.14
mean unsigned error 0.00 0.73 0.73 1.56
A37 (cyclo-CeH1)NHz* —62.00 —56.91 —66.08 —42.55
A38 (CHg)(CeHs)NH,* —56.50 —56.16 —62.38 —40.48
A39 CsHsNH e —53.50 —59.05 —64.08 —46.55
A40 (CHg)o(n-C3H7)NH* —59.00 —51.63 —58.67 —35.84
A4l (n-C3H7) HsN3sCH —65.50 —61.15 —63.21 —34.23
A42 (i-CsH7) HsNsC* —63.00 —62.00 —63.64 —30.95
A43 CsHsCO,™ —73.50 —68.05 —68.42 —62.06
Ad4 (n-CsH7)S™ —79.00 —78.88 —78.81 —-71.71
mean unsigned error 0.00 3.65 3.65 3.63

molecules in the training set, the GB/SA calculations give much in dealing with protein systems, but it is unacceptable in dealing
worse prediction than the neutral molecules. For the 30 chargedwith small organic molecule systems, as we illustrated in Table
molecules in the training set, the new parameters produced a3. The PB/SA model cannot give accurate solvation free energies
mean unsigned error of 4.71 kcal/mol. The experimental and of small organic molecules, so we think that using the
calculated solvation free energies using the new parameters arexperimental solvation free energies in parametrization is more
summarized in Tables A and B in Supporting Information. The reasonable than the calculated solvation free energies from PB/
GB/SA model based on our new parameters predicts well for SA calculations. Second, in our work, we may not define the
most of the 328 neutral compounds in training set, but as listed best atom typing rules. In principle, if we define enough atom
in Table A and B, 28 compounds showed deviations greater types and can obtain the parameters for them, the electrostatic
than 2.0 kcal/mol. We think that these deviations can be contribution may be well estimated. But unfortunately, the
explained by two reasons. The first may be suggested by thechemical environments in organic molecules are so complicated
principle difference between the experimental solvation free that it is very difficult for us to define unlimited atom types to
energies and the calculated values of GB/SA. In our fitting differentiate all chemical environments. It could explain the
process, the experimental solvation free energies were treatedstunningly large radius of type N2C (2.8 A), but we have very
as the standard values. But it should be noted that the little occurrence of this type of atom (24 times), so the radius
experimental value of a solute is not induced by a single of this type is not reliable. It could be overcome by adding a
molecule, but by a group of solute molecules in solvent. The new experimental value to the training set. Moreover, the data
solute molecules may produce intermolecular or intramolecular set with experimental solvation free energies is limited. The
group—group interactions, for example, the intermolecular data do not allow us to define so many atom types, otherwise
hydrophobic interactions and intra- or intermolecular hydrogen overfitting cannot be avoided.

bonds. Jayaram et al. used the solvation free energy predicted The derived parameters were then applied to predict the
by the PB/SA model as the standard value; it can be accuratesolvation free energy of the test set molecules for validation.
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TABLE 4: Solvation Free Energy of Proteins
PDB entry PB/SA Jayaram’s GB/SA

lahh —4013 —1170
1bbh —2221 —2966
1bbs —3769 —3200
1c7c —5260 —1615
Lctf —1087 —1018
ldyv —1586 —1648
leol —3100 —2269
1fkh —1074 —809
1954 —2283 —1731
1gky —2268 —2047
lhtr —4517 —3666
1mpp —6090 —6001
lprn —7788 —7930
lypa —681 —625
2alp —1468 —742

our GB/SA

—4047
—3387
—3745
—4057
—1029
—2100
—3320

—983
—2279
—2286
—4084
—6056
—7503

—697
—1537

test set, which has a correlation coefficient of 0.95 and a standard
deviation of 0.86. The good prediction for the test set indicates
that the obtained parameters are reliable.

In a comparative fashion, the PB/SA model and Jayaram’s
GBJ/SA model had also been employed to predict the solvation
free energy of the test set. For the charged molecules in the
test set, the performance of our GB/SA model, the PB/SA
model, and Jayaram’s GB/SA is similar. But for the neutral
molecules in the test set, the performance of these three solvation
models shows obvious differences. Figure 1b shows the linear
correlation between the experimental values and the calculated
values using PB/SA for the neutral molecules in the test set,
which has a correlation coefficient of 0.82 and a standard
deviation of 1.57. For the neutral molecules in Table 3, the mean
unsigned error between the experimental values and the
calculated values using PB/SA is 1.55 kcal/mol. It is obvious
that the predictive ability of our GB/SA model is obviously
better than that of the PB/SA model. Figure 1c shows the linear
correlation between the experimental values and the calculated
values using Jayram’s GB/SA model for the neutral molecules
in the test set, which has a correlation coefficient of 0.70 and
a standard deviation of 1.48. Meanwhile, the unsigned mean
error is 2.18 kcal/mol, which means that Jayaram’'s GB/SA
model does not have good predictive power for small organic
molecules. From the calculated results in Table 3, we also find
that the PB/SA model and Jayaram’s GB/SA model failed in
predicting the solvation free energy of molecules containing
halogen. That is because the two models do not contain
parameters for halogen atoms. We also see that Jayaram’s GB/
SA model fails to predict the solvation free energy of molecules
containing pyrrole or pyridine functional groups. This may be
because they did not include this kind of molecule in their
training set. The fact that the PB/SA model behaved much better
than Jayaram’s model implies that the PB/SA model is a more
reliable model than the GB/SA model. Though our new model
behaved better than the PB/SA model, our model employed 34
parameters, while the PB/SA employed only nine parameters.

Figure 1. (a) Experiment solvation free energy vs predicted value using 1€ only superiority of the GB/SA model to the PB/SA model
our new parameters. (b) Experiment solvation free energy vs predictedis that the GB/SA model is much faster than the PB/SA model.
value using our new parameters. (c) Experiment solvation free energy To perform PB calculations on the 36 molecules in test set, it
vs predicted value using Jayram’'s GB/SA model. took a PIV1.4GHz processor 33 s. For the GB model, the cost
time is only 3 s.
The experimental solvation free energy and the predicted value Solvation Free Energy of ProteinsThe parameters for GB/
of the test set are listed in Table 3. For the 36 neutral moleculesSA are derived based on a set of small molecules. Certainly,
in the test set, the obtained mean unsigned error is 0.73 kcal/the functional groups of protein can also be found in these small
mol, and for the left 8 charged molecules this value is 3.65 organic molecules, so we believe that the parameters can be
kcal/mol. Figure 1a shows the linear correlation between the extended to proteins. The calculated results using our GB/SA
experimental values and the calculated values using GB/SA model and the PB/SA model for the 15 proteins in the test set
based on our new parameters for the neutral molecules in theare shown in Table 4. Figure 2a shows that the plot of
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(@ ° predic_tions of the GB/SA model u_sing our new parameters have
1000 [Our GB/SA vs. PBISA | 0 & been improved a lot, we also bel!eve that the atom typing rules

] / used here should not be the optimum. In our further work, we

2000 | e will attempt to give more rational definitions for these atoms
/ in a complicated chemical environment. Certainly, the number
of atom types is strongly limited by the available experimental

4000 o 0.8 data. The predictive ability of the charge-independent model
] may be improved by choosing a balanced training set that

-5000 ~ / represents as many chemical functionalities as possible.

6000 ] < The further potential applications of GB/SA should be
] promising. First, the SASA model has potential applications in

-7000 / molecular dynamics, conformational analysis, and protein

P © folding. For example, the special program nanpeth_typing

was developed to help current AMBER users apply our new

8000 7000 -6000 -5000 -4000 -3000 -2000 -1000 O parameters to their MD simulations. More detailed descriptions

AG ., (kcal/mol) of the programpdb_typingcan be found in Supporting Informa-

tion. In our previous work, GA was used to sample the

(b) 0 conformational spaces and thoroughly search the global con-
Wayaram's GB/SA vs. PB/SA | o g0 formations of peptide$. But in our program, only the potentials
e
o

-3000 —

AG 6, (kcal/mol)

-1000 —

l of the peptides were considered. In future work, we will apply
-2000 o this model to calculate the solvation free energy in protein
3000 ] / o folding or the installation of side chains. We expect that the
] © consideration of the solvation free energy will improve the
-4000 performance of our method. Second, we will apply this model
to calculate the relative binding free energy for a set of protein/
] ligand complexes and incorporate this model into our docking
-6000 — e o program. In our group, we have developed different score
functions for the following two stages of conformation search-
ing. In the first stage, surface complementarity is considered,

-5000 —

AG_,c, (kcal/mol)

-7000 —

80004 © while in the second stage only energetic complementarity is
9000 considered. In the current release of our SFDOCK program,
8000 7000 -6000  -5000 -4000 -3000 -2000 -1000 O only the van der Waals and electrostatic interactions were used

AG___ (kcal/mol) to estimate the energetic complementarity. Soon, the GB/SA

GB/SA

model will be incorporated into our program.
Figure 2. (a) The predicted solvation free energy of proteins using

our GB/SA model vs PB/SA model. (b) The predicted solvation free

energy of proteins using Jayaram's GB/SA vs PB/SA model. Conclusion

predictions using PB/SA versus predictions using our GB/SA We derived a set of parameters for the GB/SA model

model. The good linear correlatiom &€ 0.97) indicates that consister_n _With the AMBER force f_ield. We employ'ed a ’.““C_h
the solvation abilities of these 15 proteins can be well ranked larger training set (358 moIecuIes) n the parameter's derivation
by the predictions using our GB/SA model. From the absolute procedure than Jayaram et al. did in der|V|.ng their parameters.
values, the predictions using PB/SA are in good agreement with In the current work, we employed atom typing “!'es containing
those using our GB/SA model besides 1bbh and 1bbs. 21 atom types, of which four are specially designed for lons.
Here, the predictive ability of Jayaram’s GB/SA model was The glefmmon .Of atom types was based on the SMARTS string.
also investigated. The predicted values are shown in Table 4_Pred|ct|ons using the solvation model based on the 358-molecule

. s . ) set give an average unsigned error of 0.85 kcal/mol for the
The correlation between the predictions using Jayaram’s GB/ neutral molecules and 4.71 keal/mol for the ions
SA model and those using PB/SA is shown in Figure 2b. The . i S )
predicted values using these two models show obvious linear We app_lled the parameters developed in th'sf paper to calculate
correlation ¢ = 0.85). But the linear correlation is obviously the solvation free energies for 44 small organic molecgles. Th_e
worse than that shown in Figure 2b. Moreover, the data in Table calculated results using our new parameters are consistent with
4 indicate that the unsigned mean error between the predictedt10S€ from experiments. Comparison of the results from our

values using PB/SA and those using Jayaram’s GB/SA model GB/SA model, PB/SA_ mOdel’ and Jayaram's GB/SA n_10de|
is 778 kcallmol, which is much larger than the unsigned mean shows that the calculations with our GB/SA model are obviously

error (278 kcal/mol) between the predicted values using PB/ better than those with the other two solvation models. We have

SA and those using our GB/SA model. This fact implies that also applie(_j our model to pred_ict the solvation free energies
for proteins the predictive power of our GB/SA model is much for 15 proteins. For the 15 proteins randomly selected from the
better than that of Jayaram’s GB/SA model Brookhaven PDB database, the solvation free energies predicted

by the SASA model bear high linear correlatioms={ 0.97)
with those predicted by the PB/SA model, which were much
better than those given by Jayaram’s GB/SA model.

Further Development and Applications of the GB/SA
Model. Due to the simplicity and efficiency of the GB/SA
model, it may be widely used in many fields. But further
application of this method is also significantly restricted by its
predictive power. If we want to improve the predictive ability Supporting Information Available: Experimental and
of the GB/SA model, we should provide more elaborate atom calculated solvation free energy values for molecules of the
typing rules and corresponding parameters. Although the training set (Table A) and experimental and calculated free
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energy values for molecules in the test set (Table B). This
material is available free of charge via the Internet at http:/
pubs.acs.org. The special prograab_typingwas developed

to help AMBER 6.0 users apply our parameters to their MD
simulationspdb_typingreads the coordinates with PDB format

and writes a radii file that contains the radii and screen parameter

Zhang et al.

(22) Bashford, D.; Case, D. Annu. Re. Phys. Chem200Q 51, 129—
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of each atom. This program needs two input files: gbparm.dat 4g53.

and atomtyp.txt. File gbparm.dat contains the derived GB/SA
parameters of our work, and atomtyp.txt contains the atom
typing definitions represented in SMARTS language. AMBER
users should do a minor revision to SANDER’s source code,
which is under the directory $AMBERHOME/src/sander/. The
revision is adding one line “read (18,*) (x(L96 1+ i),i = 1,
natom)” to the file mdread.f after line 637, and then recompiling
it. (You can also download the revised file from our web site.)
The PDB format file can be generated using the SAVEPDB
command available in XLEAP module of AMBERG6.0. The
generated radii file can be used by SANDER in MD simulations
and optimizations by specifying -radixfilename> in the
command line and setting the parameter READRAD to 1 in
SANDER's control parameter file. The prograndb_typingand
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Comput. Cheml993 14, 1407-1414.
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the corresponding parameter files can be obtained from us uponDaylight 4.62 Daylight Chemical Information Systems Inc.: Los Altos,

request.
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