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Here we report a set of new parameters for the generalized Born (GB) model consistent with the RESP
atomic partial charge assignment protocol. Effective atomic radii and screen factors as parameters have been
obtained through genetic algorithm optimization in the parameter space to minimize the differences between
the calculated and experimental solvation free energies. Here, the calculated solvation free energies are based
on a GB model using partial charges fitted from the electrostatic potentials based on the 6-31G* basis set
with the nonelectrostatic contributions to the free energy of solvation modeled in terms of the solvent accessible
surface area (SASA). The mean unsigned error in the solvation free energies calculated by the GB/surface
area calculations using the final parameters of the 328 neutral molecules in the training set is 0.85 kcal/mol,
and for the 30 charged molecules the value is 4.36 kcal/mol. The refined parameters were then applied to
predict the solvation free energies of 44 neutral or charged organic molecules and 15 proteins, and reliable
results were obtained for both organic molecules and proteins. For the 36 neutral organic molecules in the
test set, our parameters incurred an unsigned mean error of 0.73 kcal/mol, and for the eight charged molecules
in the test set, our parameters incurred an unsigned mean error of 3.65 kcal/mol. For the 44 organic molecules,
the performance of the GB/SA model based on our new parameters was much better than Possion-Boltzmann
(PB)/SA and GB/SA based on Jayaram’s parameters. For the 15 proteins randomly selected from the Protein
Data Bank, the calculated results from GB/SA based on our new parameters also gave consistent results with
those from PB/SA and were much better than GB/SA based on Jayaram’s parameters. This model might be
widely applied in molecules dynamics, protein folding, molecular docking, free energy calculations, and
conformation analysis. Moreover, we are now supplying a program to help AMBER users apply our new
parameters to their MD simulations.

Introduction

Accurately and rapidly modeling solvation is crucial to
quantitatively understanding the chemical and physical proper-
ties that underly many biochemical processes. To solve this
problem, both molecules1-3 and continuum4-10 models of
solvent have been developed. Explicit solvent models employ
thousands of discrete solvent molecules and have been widely
used for simulations in the liquid environment. Many properties
of the solutions can be reproduced by calculations employing
explicit solvent models, but such calculations converge very
slowly because of the large number of particles and states
involved. Because explicit solvent models are so computation-
ally demanding, there is interest in developing more rapid
continuum solvation models. Continuum solvation models treat
the solvent as a continuous medium surrounding the solute
beginning near its van der Waals surface. In principle, such
models can predict solvation effects with relatively little
computational resources, because the model includes no particles
other than the atoms of solute.

A lot of continuum solvation models have been reported over
the years. Many treatments of these were based on the surface
area (SA) or solvent accessible surface area (SASA).11-15

However, we are concerned that area-based representations
provide poor approximations for the long-range electrostatic
component of solvation. Another popular approach to continuum

solvation treats the solvent as a high dielectric continuum,
interacting with charges that are embedded in solute molecules
of lower dielectric media.16-18 Despite the severity of the
approximation, this model gives a good account of the electro-
static component of solvation energy. However, such dielectric
continuum models of the solvent do not include van der Waals
solvent-solute interaction terms.

Because of the shortcomings of the previous models, the
Possion-Boltzmann (PB)/SA model and the generalized Born
(GB)/SA model had been developed, which provided solvation
free energy based on the PB equation19 or GB model9 for the
electrostatic component and SA for the nonpolar component of
the solvation free energy.

In the PB/SA and GB/SA models, the solvation free energy
is given as the sum of the solute-solvent van der Waals term
and the solute-solvent electrostatic polarization term, as il-
lustrated in eq 1.

Because hydrocarbons are nonpolar molecules (Gpol ∼ 0),
and theirGsol in water is approximately linearly related13-15 to
their SASA, we compute the solute-solvent van der Waals term
by evaluating the SASA.

Gpol are usually presented by the PB equation, which is
typically solved by finite-difference or boundary element
numerical methods.8,17-19 The equation solving procedure may
become very expensive for proteins and nucleic acids, so there* Corresponding author. E-mail: xiaojxu@chem.pku.edu.cn.
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is a interest in finding an approximate solvation for the PB
equation. One candidate is the GB approach.9 In this model,
the polar term of solvation free energy is represented by eqs 2
and 3.

Among the equations,qi andqj is the partial charge of atoms
i andj, respectively;εw is the solvent dielectric constant of the
media;rij is the distance between atomsi and j; andRi andRj

is the effective Born radii of atomsi and j, respectively. In its
original form, Ri was estimated by a numerical integration
procedure, but recently a pairwise approximation calculation
of effective Born radii has been reported, and was widely
accepted in estimating the solvation free energies of proteins.20

The continuum solvation model has been reviewed heavily in
the recent past, to include GB models.21,22 A nice review of
both continuum and explicit models applied to biological
problems is that by Orozco and Luque.23

The energy calculations of protein and nucleic acids are
typically based on force fields such as AMBER, CHARMM,
and GROMOS, and each force field has its own rule in
determining the atomic partial charges. For instance, the
AMBER 6.0 suite software package employs a so-called RESP
atomic partial charge assignment protocol, so for GB models
run on these force fields, it is necessary to determine a set of
parameters to estimate effective Born radius accurately. In 1998,
Jayaram et al. reported a set of parameters for GB models
consistent with the RESP protocol.24 In 2000, Cheng et al.
reported a set of parameters for GB models consistent with the
MMFF force field.25 Recently, Liu et al. reported GB parameters
consistent with the GROMOS96 force field.26

As we mentioned above, there was already a set of GB
parameters consistent with the RESP protocol reported by
Jayaram et al. in 1998, but their parameters were designed only
for proteins, and not suitable for studying the protein-inhibitor
complex system; so for many organic molecules, the perfor-
mance of GB/SA based on the Jayaram’s parameters is very
poor. Moreover, Jayaram’s group employed a relatively small
training set (32 molecules) to derive their parameters, which is
insufficient for dealing with small organic molecule systems,
so there is interest in a set of GB parameters that could predict
the solvation free energy of small organic molecules accurately.

Here we report a set of parameters for the GB model
consistent with the RESP atomic partial charge assignment
protocol. This set of parameters was derived by fitting to the
experimental solvation free energies of 358 small organic
molecules. To our knowledge, the training set used here is
significantly larger than those in previous work.24-26 The
adoption of a large training set gives us more opportunity to
define more elaborate definitions of atom typing rules. Further-
more, we used the genetic algorithm (GA) to optimize the
difference between the calculated solvation free energies and
the experimental solvation free energies. As a very efficient
stochastic optimization method, it has been widely used to solve
the minimization problems such as conformational search,27

molecular docking,28-30 and QSAR.31-33 We expect that by
applying GA as the optimization method, the parameters for
each atom type should achieve the most optimal values. The
Minnesota group has used GA to develop all of their quantum

mechanical GB models (the SMx models) and have gotten
brilliant results.34

Methodology

Data Set.We selected 402 organic molecules to perform the
parametrization. Their names and experimental solvation free
energies are included in Supporting Information. The experi-
mental solvation free energies were determined at 298 K, 1 atm.
The molecular geometries of all compounds were modeled using
the Cerius2 molecular simulation package.35 The initial structures
were fully minimized using molecular mechanics with the
MMFF force field.36 Conformational analyses were performed
for some molecules with flexible chains to find the global
minimum geometries. For each molecule, only the global
minimum conformation was used in the subsequent parametri-
zation. The whole data set was divided into a training set with
358 molecules and a test set with 44 molecules. For all
molecules in the training set, 328 molecules were neutral, while
the other 30 molecules were charged. The solvation parameters
were determined based on the training set, and the actual
prediction ability was validated by the test set. The parametriza-
tion procedure is basically searching for a set of parameters
that could reproduce the solvation free energies of the param-
etrization set molecules. The electrostatic contribution to sol-
vation free energy can be estimated according to eqs 2 and 3,
which requires an input of atomic partial charge, atomic
Cartesian coordinates, and atomic initial Born radii. The
nonpolar contribution to the solvation free energy is estimated
by a molecule’s SASA. The derived model was then applied to
predict the solvation free energy of two test sets.

Among the first test set made up of 44 simple organic
molecules, 36 molecules were neutral and 8 molecules were
charged. As the second test set, 15 proteins were chosen
randomly from the Brookhaven Protein Data Bank (PDB). For
these proteins, all crystallographic water molecules were
eliminated from the structures. Some missing hydrogen atoms
were added using the InsightII molecular simulation package,37

with a neutral sp3 N-terminus and a carboxylic (COOH)
C-terminus assigned at neutral pH. These structures were
minimized using the AMBER force field to remove any steric
overlap with a restraint of the main chain.

Atom Typing Rule. We classified the atoms in molecules
according to its element and hybridization. A total of 21 atom
types were introduced, and four of them were designed for
representing charged molecules. The definition of these atom
types was based on the SMARTS description (see Table 1).38

SMARTS is a language that allows you to specify substructures
using rules that are straightforward extensions of SMILES. In
fact, almost all SMILES specifications are valid SMARTS
targets. As SMILES, in SMARTS one can use atomic and bond
symbols to specify a graph. However, in SMARTS the labels
for the graph’s nodes and edges (its “atoms” and “bonds”) are
extended to include “logical operators” and special atomic and
bond symbols; these allow SMARTS atoms and bonds to be
more general. Using SMARTS, flexible and efficient substruc-
ture search specifications can be made in terms that are
meaningful to chemists. In the current work, a parameter file
was used to store the SMARTS chains defined for all atom
types. If we want to add some new typing rules or modify the
typing rules, we only need to make some modifications to this
parameter file.

Derivation of Atomic Coordinate and Atomic Partial
Charges.Partial charges were derived to be consistent with the
AMBER charge derivation protocols. All the studied organic
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molecules after minimization of molecular mechanics were
further optimized using quantum mechanics with HF/6-31G
basis set, and then the HF/6-31G* electrostatic potential (ESP)
charges of the small organic molecules were obtained using
Gaussian-98.39 For proteins, their ESP charges were assigned
using xleap, the graphics interface of AMBER 6.0 software
package,40 which assigned the predetermined RESP charge to
each atom in protein. The charge we used here was the gas-
phase HF/6-31G* charge, which is larger than the condensed-
phase charge, but this error mimics the increased partial atomic
charges that would be expected after solute polarization were
the solute to be treated by a quantum mechanical self-consistent
reaction field procedure. Carlson et al. were the first to point
this out explicitly.40

Calibration of Atomic Effective Born Radii. The effective
Born radii were calculated following a procedure recommended
by Hawkins, Cramer, and Truhlar, in which the effective Born
radii are estimated from a sum over atom pairs as described in
eq 4.18

where

In the above equations,ri and rj are the initial Born radii of
atomi and atomj, while andFi is the product of atomi’s initial
Born radii and screen parameters. The screen parameters were
introduced by Hawkins et al. to correct for systematic errors
introduced by the pairwise screening approximation.

Nonpolar Contribution of the Solvation Free Energy. As
we had mentioned above, the nonpolar contribution solvation
free energy is linear relative to the SASA. We calculated the
surface using MSMS with a probe radius of 1.4 Å.41 The
nonpolar contribution of solvation free energy is then estimated
with a coefficient of 0.005 kcal/(mol Å2), which is the default
value of the SANDER module of the AMBER 6.0 software
package.

Parameters Fitting Procedure.Now we have all the inputs
required by a GB/SA solvation model. Given a set of parameters,
we can predict the solvation free energy of each molecule in
the training set, and given the experimental solvation free
energy, we can estimate its mean unsigned error.

Here, the fitting procedure was based on GA, which was
under development in our laboratory.30-32 GA can effectively
deal with the multiple-dimension problem, no matter whether
those variables are highly coupled or not, which makes it an
ideal optimization method for the problem of parametriza-
tion.33,42,43 The brief fitting process based on GA is in four
steps: creation of the initial population, selection operation,
crossover operation, and mutation operation. According to the
GA, an individual should be represented as a linear string, which
plays the role of the DNA for the individual, so the parameters
for all atom types were treated as a string. The initial population
was generated by randomly generating the initial parameters.
Then these individuals were scored according to their fitness.
In the parametrization of GA, the sum of mean unsigned errors
of the training set was used as the score function. After some
cycles of the selection, crossover, and mutation operations, the
model with the highest fitness score was obtained. The GA
optimizations were terminated if the total mean unsigned error
did not change after a certain number of iterative cycles; for
example, after 100, the optimization would end. More detailed
description of the fitting process based on GA can be found in
our previous work.33,42,43

The fitting procedure was taken in two stages. In the first
stage, the parameters of 17 normal atom types were determined
by fitting the experimental solvation free energy with the
calculated solvation free energies of the 328 neutral using a
genetic algorithm. In the second stage, the derived parameter
in the first stage was fixed and the parameters of four ion atom
types were determined by fitting the experimental solvation free

TABLE 1: Typing Protocol of Atom Types and Derived Parameters for Generalized Born Solvation Model

no. name description
occurrence in

parametrization set radii
screen

parameter

1 HC hydrogen atom connected to alkane carbon 2707 1.6 0.5
2 H1 hydrogen atom connected to polar atom 100 0.9 1.2
3 HA hydrogen atom connected to aromatic carbon 376 0.9 0.8
4 C1 sp1 carbon atom 25 2.5 0.9
5 C2 sp2 carbon atom 155 2.4 0.5
6 C3 sp3 carbon atom 1151 2.1 0.6
7 CA aromatic carbon 538 1.7 0.8
8 N1 sp1 nitrogen atom 7 1.4 1.5
9 N2 sp2 nitrogen atom 51 1.3 0.7

10 N3 sp2 nitrogen atom 28 1.2 0.9
11 O1 sp2 oxygen 95 1.85 1.0
12 O2 sp3 oxygen 132 1.5 0.8
13 F fluorine 89 2.0 1.0
14 P phosphorus 9 2.5 0.5
15 S sulfur atom 25 2.0 1.1
16 Cl chlorine 128 2.2 0.8
17 Br bromine 37 2.5 0.7
18 N2C charged sp2 nitrogen atom 24 2.8 0.6
19 N3C charged sp3 nitrogen atom 14 1.4 1.0
20 OC charged oxygen atom 8 1.3 1.9
21 SC charged sulfur atom 4 1.8 1.1

Ri
-1 ) ri

-1 - (12)∑j

1

Lij

-
1

Uij

+
rij

4( 1

Uij
2

-
1

Lij
2) +

1

2rij

ln
Lij

Uij

+
Fj

2

2rij( 1

Uij
2

-
1

Lij
2) (4)
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Lij ) rij - Fj, if ri < rij - Fj

Uij ) 1, if ri > rij + Fj

Uij ) rij + Fj, if ri < rij + Fj
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energies with the calculated solvation free energies of the 30
charged molecules using a systemic search method.

PB/SA Solvation Model.As we had mentioned above, PB/
SA solvation model is a widely accepted solvation model, so
we used the model to predict the solvation free energy of test
set molecules, and 15 proteins for a reference.

In PB/SA model, the electrostatic contribution to the solvation
free energy was calculated by taking the difference between
the total energy of the system obtained withεint ) 2; εext ) 1
and εint ) 2; εext ) 78.5. It requires an input of atomic
coordinate, partial charge, and van der Waals radii. In our
calculations, we used the same partial charge and coordinate
as in the GB calculation. For the van der Waals radii, we used
the default value supplied by the DelphiII software package.19

The radii of atoms were taken from the PARSE parameter set.44

It should be noted that the PARSE parameter set does not
provide the van der Waals radii of halogen, so we used the van
der Waals radii in the AMBER force field instead, which is
1.75 Å for the fluorine atom, 1.95 Å for the chlorine atom, and
2.22 Å for the bromine atom.

The calculations based on PB equations were performed using
the DelphiII software package. In the prediction of solvation
free energies of test set molecules, the resolution employed was
4 grids/Å. For proteins, the resolution was 1.8 grids/Å. The
calculations of SASA were performed using the MSMS
program.41

Jayaram’s GB/SA Model. Jayaram’s generalized Born
model was employed to predict the solvation free energy of all
the reference systems.21 The setting is the same as that in our
GB calculations.

It should be noted that many molecules in the training set
and the test set contain halogen atoms, but they do not have
corresponding GB parameters in Jayaram’s parameter set, so
for these atoms, the initial Born radii were set to van der Waals
radii in the AMBER force field and the screen parameter was
set to 1.0. The calculations based on Jayaram’s solvation model
were performed using SANDER in AMBER6.0 with the control
parameter GBPARM set to 1.

Results and Discussion

Atom Typing Rules. As we mentioned above, for each atom
two parameters should be determined: the initial Born radii and
the screen parameter, so the determination of the parameter of
every atom is impossible. One strategy is to classify atoms into
different categories according to its chemical environment.
Atoms in the same category have the same parameters. Each
category is called an atom type, and their definitions are called
the atom typing rule. The atom typing rule is the key of the
parametrization work, and it should meet some demands. First,
it should be fully contained, which means that every atom in
the concerned system can be classified into one atom type;
second, each atom type should be exclusive, which means there
should not be an atom that can be classified into two or more
categories; third, the number of atom types should be as small
as possible to avoid the overfitting problem.

In the work of Jayaram et al.,24 the authors employed relative
simple atom typing rules, in which atoms are classified into six
types according to their element. They chose this typing rule
partly because of their relative small training set (32 molecules).
Their parameters would be efficient in predicting the solvation
free energy of proteins and nuclear acids, because atom types
in these systems are very limited, but it may not behave well in
predicting the solvation free energies of organic molecules
because the chemical environments in organic molecules are

much more complicated than those in proteins. Therefore,
Jayaram’s parameters may not be suitable for studying the
solvation contribution to the interaction free energy between
enzyme and inhibitor, which is of great importance in drug
design.

To predict the solvation free energy of organic molecules,
more complicated atom typing rules must be employed. Here
we employed an atom typing rule containing 21 atom types,
and four of them are specially designed for representing ions.
Their definitions and number of appearance in the training set
are listed in Table 1. To avoid the overfitting problem, we
employed a much bigger training set made up of 358 molecules,
in which 328 are neutral and 30 are charged.

We took this typing rule from the one SANDER used in the
calculation of molecular SASA. As we know SANDER
employed a method named LCPO to calculate molecular SASA.
In LCPO, atoms were classified into 21 types according to their
element, hybridization, and number of hydrogen atoms linked
to it; our typing rule is much like theirs except that we neglect
the number of hydrogen atoms which will enlarge our type set
and consequently cause the overfitting problem.

Solvation Free Energy of Training Set and Test Set.The
derived parameters are listed in Table 1. If we do not consider
the four charged atom types, the GB/SA model based on the
new parameters yielded fairly satisfactory results,n ) 328,
r ) 0.911,s ) 1.241,F ) 1590.841. From the predictions to
the molecules in the training set, there are two compounds
(compounds 268 and 291 in Table A, Supporting Information)
with deviations larger than 6.0 kcal/mol. If we eliminate these
two compounds as outliers, the correlation between the experi-
mental solvation free energies and the calculated values was
improved obviously (n ) 326, r ) 0.924, s ) 1.115, F )
1911.039). For the 328 neutral molecules in the training set,
this new set of parameters gives a mean unsigned error of 0.85
kcal/mol in predicting the solvation free energy. For the charged

TABLE 2: Neutral Organic Molecules in the Training Set
with Deviations Larger than 2.0 kcal/mol

no. molecular name ∆Gexp ∆Gcalc residue

65 tetrafluoromethane 3.16 0.33-2.83
66 hexafluoroethane 3.94 1.07-2.87
67 octafluoropropane 4.28 2.01-2.27
68 fluorobenzene 0.78 -1.71 -2.49
70 chlorofluoromethane 0.77 -1.36 -2.13
90 1,1,2,2-tetrachloroethane -2.36 -0.08 2.28

225 methyl formate -2.78 -5.91 -3.13
226 ethyl formate -2.65 -5.29 -2.64
227 propyl formate -2.48 -5.21 -2.73
251 ethyl heptanoate -4.60 -7.87 -3.27
252 methyl octanoate -4.61 -6.72 -2.11
253 methyl benzoate -4.50 -7.55 -3.05
254 butylamine -4.38 -6.65 -2.27
255 pentylamine -4.09 -6.67 -2.58
256 hexylamine -4.04 -6.82 -2.78
264 N,N-dimethylpiperazine -7.58 -2.04 5.55
265 N-methylpiperazine -7.77 -5.44 2.33
266 1,1-dimethyl-3-phenyl urea -11.87 -9.00 2.87
268 ethylenediamine -9.75 -18.23 -8.48
271 N-methylmorpholine -6.34 -3.59 2.75
272 N-methylpyrrolidine -3.97 -0.80 3.17
273 N-methylpiperidine -3.89 -0.78 3.11
291 9-methyladenine -13.60 -20.19 -6.59
307 N-methylformamide -10.00 -7.94 2.06
309 E-N-methylacetamide -10.00 -7.75 2.25
310 Z-N-methylacetamide -10.00 -7.14 2.86
328 dimethyl 3-methyl-4-thio-

methoxyphenyl thiophosphate
-6.92 -3.85 3.07

329 ethyl 4-cyanophenyl
phenylthiophosphonate

-5.10 -7.91 -2.81
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molecules in the training set, the GB/SA calculations give much
worse prediction than the neutral molecules. For the 30 charged
molecules in the training set, the new parameters produced a
mean unsigned error of 4.71 kcal/mol. The experimental and
calculated solvation free energies using the new parameters are
summarized in Tables A and B in Supporting Information. The
GB/SA model based on our new parameters predicts well for
most of the 328 neutral compounds in training set, but as listed
in Table A and B, 28 compounds showed deviations greater
than 2.0 kcal/mol. We think that these deviations can be
explained by two reasons. The first may be suggested by the
principle difference between the experimental solvation free
energies and the calculated values of GB/SA. In our fitting
process, the experimental solvation free energies were treated
as the standard values. But it should be noted that the
experimental value of a solute is not induced by a single
molecule, but by a group of solute molecules in solvent. The
solute molecules may produce intermolecular or intramolecular
group-group interactions, for example, the intermolecular
hydrophobic interactions and intra- or intermolecular hydrogen
bonds. Jayaram et al. used the solvation free energy predicted
by the PB/SA model as the standard value; it can be accurate

in dealing with protein systems, but it is unacceptable in dealing
with small organic molecule systems, as we illustrated in Table
3. The PB/SA model cannot give accurate solvation free energies
of small organic molecules, so we think that using the
experimental solvation free energies in parametrization is more
reasonable than the calculated solvation free energies from PB/
SA calculations. Second, in our work, we may not define the
best atom typing rules. In principle, if we define enough atom
types and can obtain the parameters for them, the electrostatic
contribution may be well estimated. But unfortunately, the
chemical environments in organic molecules are so complicated
that it is very difficult for us to define unlimited atom types to
differentiate all chemical environments. It could explain the
stunningly large radius of type N2C (2.8 Å), but we have very
little occurrence of this type of atom (24 times), so the radius
of this type is not reliable. It could be overcome by adding a
new experimental value to the training set. Moreover, the data
set with experimental solvation free energies is limited. The
data do not allow us to define so many atom types, otherwise
overfitting cannot be avoided.

The derived parameters were then applied to predict the
solvation free energy of the test set molecules for validation.

TABLE 3: Solvation Free Energy of Molecules in the Test Set

no. name ∆Gexp our GB/SA model PB/SA model Jayaram’s GB/SA model

A1 n-pentane 2.33 1.18 1.13 1.67
A2 n-heptane 2.62 1.32 1.29 1.96
A3 4-methyl-1-pentene 1.91 1.15 -1.01 -0.19
A4 1,4-pentadiene 0.94 0.98 -2.46 -1.29
A5 butenyne 0.04 -0.07 -4.01 -3.13
A6 butylbenzene -0.40 -1.30 -2.16 0.67
A7 1,1-difluoroethane -0.11 -1.34 -2.92 -0.59
A8 dichlorodifluoromethane 1.69 1.15 1.14 1.68
A9 1-bromo-1,2,2,2-tetrafluoroethane 0.52 -1.30 -0.86 2.88
A10 1,1,1,2-tetrachloroethane -1.15 -0.36 -1.53 1.39
A11 1,1-dichlorobutane -0.70 -0.51 -1.47 0.84
A12 chlorobenzene -1.01 -1.60 -2.17 0.36
A13 1-chloro-2-bromoethane -1.95 -0.82 -2.81 0.28
A14 1-bromo-2-methylpropane -0.03 -0.48 -1.61 0.17
A15 o-bromocumene -0.85 -1.31 -2.03 0.51
A16 1-butanol -4.72 -5.24 -4.12 -1.97
A17 2-methyl-1-pentanol -3.93 -4.62 -3.79 -1.51
A18 1-heptanol -4.25 -4.94 -3.79 -1.42
A19 3-cresol -5.49 -5.86 -7.02 -3.04
A20 ethyl propyl ether -1.81 -1.23 -0.89 1.25
A21 1,2-diethoxyethane -3.53 -2.43 -2.16 1.46
A22 pentanal -3.03 -2.89 -4.26 -3.16
A23 m-hydroxybenzaldehyde -9.51 -8.80 -10.22 -5.51
A24 cyclopentanone -4.68 -3.32 -4.76 -2.98
A25 propionic acid -6.46 -6.36 -8.11 -4.80
A26 isobutyl formate -2.22 -3.13 -5.24 -1.68
A27 methyl propionate -2.97 -3.01 -4.93 -1.54
A28 methyl hexanonate -2.48 -2.57 -4.58 -0.84
A29 dimethylamine -4.28 -4.99 -1.98 -0.36
A30 aniline -5.49 -7.42 -7.69 -2.31
A31 pyrrolidine -5.47 -2.88 -1.24 0.84
A32 2,4-dimethylpyridine -4.85 -4.39 -4.33 -1.44
A33 2-ethyl-3-methoxypyrazine -4.39 -4.20 -3.48 -0.10
A34 N′,N-dimethyl formamide -4.90 -5.38 -6.81 -4.45
A35 thioanisole -2.73 -2.09 -3.20 -0.51
A36 tripropyl phosphate -6.10 -6.47 -8.58 -3.14

mean unsigned error 0.00 0.73 0.73 1.56

A37 (cyclo-C6H11)NH3
+ -62.00 -56.91 -66.08 -42.55

A38 (CH3)(C6H5)NH2
+ -56.50 -56.16 -62.38 -40.48

A39 C5H5NH+c -53.50 -59.05 -64.08 -46.55
A40 (CH3)2(n-C3H7)NH+ -59.00 -51.63 -58.67 -35.84
A41 (n-C3H7) H5N3C+ -65.50 -61.15 -63.21 -34.23
A42 (i-C3H7) H5N3C+ -63.00 -62.00 -63.64 -30.95
A43 C6H5CO2

- -73.50 -68.05 -68.42 -62.06
A44 (n-C3H7)S- -79.00 -78.88 -78.81 -71.71

mean unsigned error 0.00 3.65 3.65 3.63
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The experimental solvation free energy and the predicted value
of the test set are listed in Table 3. For the 36 neutral molecules
in the test set, the obtained mean unsigned error is 0.73 kcal/
mol, and for the left 8 charged molecules this value is 3.65
kcal/mol. Figure 1a shows the linear correlation between the
experimental values and the calculated values using GB/SA
based on our new parameters for the neutral molecules in the

test set, which has a correlation coefficient of 0.95 and a standard
deviation of 0.86. The good prediction for the test set indicates
that the obtained parameters are reliable.

In a comparative fashion, the PB/SA model and Jayaram’s
GB/SA model had also been employed to predict the solvation
free energy of the test set. For the charged molecules in the
test set, the performance of our GB/SA model, the PB/SA
model, and Jayaram’s GB/SA is similar. But for the neutral
molecules in the test set, the performance of these three solvation
models shows obvious differences. Figure 1b shows the linear
correlation between the experimental values and the calculated
values using PB/SA for the neutral molecules in the test set,
which has a correlation coefficient of 0.82 and a standard
deviation of 1.57. For the neutral molecules in Table 3, the mean
unsigned error between the experimental values and the
calculated values using PB/SA is 1.55 kcal/mol. It is obvious
that the predictive ability of our GB/SA model is obviously
better than that of the PB/SA model. Figure 1c shows the linear
correlation between the experimental values and the calculated
values using Jayram’s GB/SA model for the neutral molecules
in the test set, which has a correlation coefficient of 0.70 and
a standard deviation of 1.48. Meanwhile, the unsigned mean
error is 2.18 kcal/mol, which means that Jayaram’s GB/SA
model does not have good predictive power for small organic
molecules. From the calculated results in Table 3, we also find
that the PB/SA model and Jayaram’s GB/SA model failed in
predicting the solvation free energy of molecules containing
halogen. That is because the two models do not contain
parameters for halogen atoms. We also see that Jayaram’s GB/
SA model fails to predict the solvation free energy of molecules
containing pyrrole or pyridine functional groups. This may be
because they did not include this kind of molecule in their
training set. The fact that the PB/SA model behaved much better
than Jayaram’s model implies that the PB/SA model is a more
reliable model than the GB/SA model. Though our new model
behaved better than the PB/SA model, our model employed 34
parameters, while the PB/SA employed only nine parameters.
The only superiority of the GB/SA model to the PB/SA model
is that the GB/SA model is much faster than the PB/SA model.
To perform PB calculations on the 36 molecules in test set, it
took a PIV1.4GHz processor 33 s. For the GB model, the cost
time is only 3 s.

Solvation Free Energy of Proteins.The parameters for GB/
SA are derived based on a set of small molecules. Certainly,
the functional groups of protein can also be found in these small
organic molecules, so we believe that the parameters can be
extended to proteins. The calculated results using our GB/SA
model and the PB/SA model for the 15 proteins in the test set
are shown in Table 4. Figure 2a shows that the plot of

Figure 1. (a) Experiment solvation free energy vs predicted value using
our new parameters. (b) Experiment solvation free energy vs predicted
value using our new parameters. (c) Experiment solvation free energy
vs predicted value using Jayram’s GB/SA model.

TABLE 4: Solvation Free Energy of Proteins

PDB entry PB/SA Jayaram’s GB/SA our GB/SA

1ahh -4013 -1170 -4047
1bbh -2221 -2966 -3387
1bbs -3769 -3200 -3745
1c7c -5260 -1615 -4057
1ctf -1087 -1018 -1029
1dyv -1586 -1648 -2100
1eol -3100 -2269 -3320
1fkh -1074 -809 -983
1g54 -2283 -1731 -2279
1gky -2268 -2047 -2286
1htr -4517 -3666 -4084
1mpp -6090 -6001 -6056
1prn -7788 -7930 -7503
1ypa -681 -625 -697
2alp -1468 -742 -1537
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predictions using PB/SA versus predictions using our GB/SA
model. The good linear correlation (r ) 0.97) indicates that
the solvation abilities of these 15 proteins can be well ranked
by the predictions using our GB/SA model. From the absolute
values, the predictions using PB/SA are in good agreement with
those using our GB/SA model besides 1bbh and 1bbs.

Here, the predictive ability of Jayaram’s GB/SA model was
also investigated. The predicted values are shown in Table 4.
The correlation between the predictions using Jayaram’s GB/
SA model and those using PB/SA is shown in Figure 2b. The
predicted values using these two models show obvious linear
correlation (r ) 0.85). But the linear correlation is obviously
worse than that shown in Figure 2b. Moreover, the data in Table
4 indicate that the unsigned mean error between the predicted
values using PB/SA and those using Jayaram’s GB/SA model
is 778 kcal/mol, which is much larger than the unsigned mean
error (278 kcal/mol) between the predicted values using PB/
SA and those using our GB/SA model. This fact implies that
for proteins the predictive power of our GB/SA model is much
better than that of Jayaram’s GB/SA model.

Further Development and Applications of the GB/SA
Model. Due to the simplicity and efficiency of the GB/SA
model, it may be widely used in many fields. But further
application of this method is also significantly restricted by its
predictive power. If we want to improve the predictive ability
of the GB/SA model, we should provide more elaborate atom
typing rules and corresponding parameters. Although the

predictions of the GB/SA model using our new parameters have
been improved a lot, we also believe that the atom typing rules
used here should not be the optimum. In our further work, we
will attempt to give more rational definitions for these atoms
in a complicated chemical environment. Certainly, the number
of atom types is strongly limited by the available experimental
data. The predictive ability of the charge-independent model
may be improved by choosing a balanced training set that
represents as many chemical functionalities as possible.

The further potential applications of GB/SA should be
promising. First, the SASA model has potential applications in
molecular dynamics, conformational analysis, and protein
folding. For example, the special program namedpdb_typing
was developed to help current AMBER users apply our new
parameters to their MD simulations. More detailed descriptions
of the programpdb_typingcan be found in Supporting Informa-
tion. In our previous work, GA was used to sample the
conformational spaces and thoroughly search the global con-
formations of peptides.41 But in our program, only the potentials
of the peptides were considered. In future work, we will apply
this model to calculate the solvation free energy in protein
folding or the installation of side chains. We expect that the
consideration of the solvation free energy will improve the
performance of our method. Second, we will apply this model
to calculate the relative binding free energy for a set of protein/
ligand complexes and incorporate this model into our docking
program. In our group, we have developed different score
functions for the following two stages of conformation search-
ing. In the first stage, surface complementarity is considered,
while in the second stage only energetic complementarity is
considered. In the current release of our SFDOCK program,
only the van der Waals and electrostatic interactions were used
to estimate the energetic complementarity. Soon, the GB/SA
model will be incorporated into our program.

Conclusion

We derived a set of parameters for the GB/SA model
consistent with the AMBER force field. We employed a much
larger training set (358 molecules) in the parameter’s derivation
procedure than Jayaram et al. did in deriving their parameters.
In the current work, we employed atom typing rules containing
21 atom types, of which four are specially designed for ions.
The definition of atom types was based on the SMARTS string.
Predictions using the solvation model based on the 358-molecule
set give an average unsigned error of 0.85 kcal/mol for the
neutral molecules and 4.71 kcal/mol for the ions.

We applied the parameters developed in this paper to calculate
the solvation free energies for 44 small organic molecules. The
calculated results using our new parameters are consistent with
those from experiments. Comparison of the results from our
GB/SA model, PB/SA model, and Jayaram’s GB/SA model
shows that the calculations with our GB/SA model are obviously
better than those with the other two solvation models. We have
also applied our model to predict the solvation free energies
for 15 proteins. For the 15 proteins randomly selected from the
Brookhaven PDB database, the solvation free energies predicted
by the SASA model bear high linear correlations (r ) 0.97)
with those predicted by the PB/SA model, which were much
better than those given by Jayaram’s GB/SA model.

Supporting Information Available: Experimental and
calculated solvation free energy values for molecules of the
training set (Table A) and experimental and calculated free

Figure 2. (a) The predicted solvation free energy of proteins using
our GB/SA model vs PB/SA model. (b) The predicted solvation free
energy of proteins using Jayaram’s GB/SA vs PB/SA model.
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energy values for molecules in the test set (Table B). This
material is available free of charge via the Internet at http://
pubs.acs.org. The special programpdb_typingwas developed
to help AMBER 6.0 users apply our parameters to their MD
simulations.pdb_typingreads the coordinates with PDB format
and writes a radii file that contains the radii and screen parameter
of each atom. This program needs two input files: gbparm.dat
and atomtyp.txt. File gbparm.dat contains the derived GB/SA
parameters of our work, and atomtyp.txt contains the atom
typing definitions represented in SMARTS language. AMBER
users should do a minor revision to SANDER’s source code,
which is under the directory $AMBERHOME/src/sander/. The
revision is adding one line “read (18,*) (x(L96- 1 + i), i ) 1,
natom)” to the file mdread.f after line 637, and then recompiling
it. (You can also download the revised file from our web site.)
The PDB format file can be generated using the SAVEPDB
command available in XLEAP module of AMBER6.0. The
generated radii file can be used by SANDER in MD simulations
and optimizations by specifying -radii<filename> in the
command line and setting the parameter READRAD to 1 in
SANDER’s control parameter file. The programpdb_typingand
the corresponding parameter files can be obtained from us upon
request.
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